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Abstract Multilocation trials are often used to analyse 
the adaptability of genotypes in different environments 
and to find for each environment the genotype that is 
best adapted; i.e. that is highest yielding in that environ- 
ment. For this purpose, it is of interest to obtain a 
reliable estimate of the mean yield of a cultivar in a given 
environment. This article compares two different statis- 
tical estimation procedures for this task: the Additive 
Main Effects and Multiplicative Interaction (AMMI) 
analysis and Best Linear Unbiased Prediction (BLUP). 
A modification of a cross validation procedure com- 
monly used with AMMI is suggested for trials that are 
laid out as a randomized complete block design. The use 
of these procedure is exemplified using five faba bean 
datasets from German registration trails. BLUP was 
found to outperform AMMI in four of five faba bean 
datasets. 

Key words Two-way classification �9 Genotype x 
environment interaction �9 Additive main effects 
multiplicative interaction �9 Best linear unbiased 
prediction. Predictive accuracy �9 Cross validation 

Introduction 

The evaluation of new cultivars is usually done by 
testing a set of cultivars in different environments. Such 
multilocation trials are essential for obtaining well- 
adapted cultivars. Basically, one is interested in iden- 
tifying the genotypes best adapted for each particular 
environment. To extract a maximum of information 
from the data we seek a "best" estimate of yield. The 
most common estimate is the arithmetic mean of a 
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genotype across replicates in an environment. This 
mean is often called the cell mean. It has the virtue of 
simplicity but the shortcoming of not fully exploiting all 
information contained in the complete genotype x envi- 
ronment dataset. 

Gauch (1988, 1992) has advocated the use of what 
he terms AMMI (Additive Main Effects Multiplicative 
Interaction) analysis of multilocation trial data. In 
many cases, this procedure has been shown to increase 
estimation accuracy by separating the pattern from the 
noise in the residuals of the additive model (Gauch 
1988, 1992). 

In the AMMI model both genotypes and environ- 
ments are regarded as fixed. When the number of geno- 
types is large, however, modelling genotypic effects as 
random may be preferable despite the fact that it would 
be classified as fixed using traditional definitions 
(Stroup and Mulitze 1991). In the case of random 
genotypic effects, the assessment of the mean yield of a 
genotype in a certain environment may be viewed as a 
problem of prediction rather than one of estimation (see 
Searle et al. 1992, p 18). Random genotypes also imply 
random genotype-environmental interaction, so the 
prediction of yield involves prediction of a genotype's 
random interaction with a specific environment. The 
prediction of the outcome of random variables is com- 
monly done by Best Linear Unbiased Prediction 
(BLUP), as originally suggested by Henderson (1975). 
BLUP of additive main effects for yield trials has been 
investigated by Hill and Rosenberger (1985) and Stroup 
and Mulitze (1991). 

The purpose of this paper is to propose a BLUP 
procedure that includes a prediction of genotype- 
environmental interaction. The accuracy of BLUP and 
AMMI are compared based on the root mean square 
prediction difference (RMSPD) suggested by Gauch 
and Zobel (1988). Gauch and Zobel's procedure for 
computing the RMSPD is appropriate for a completely 
randomized (CR) design. In this paper the procedure is 
slightly modified for application to a randomized com- 
plete block (RCB) design. 
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Methods 

We assume the following linear model for a two-way classification 
with interaction: 

yi~ = I~ + cq + zj  + (e~z)u + e u (i = 1 , . . . ,  K;  ] = 1 . . . .  , N)  (1) 

Yu = mean of i-th genotype in j - th  environment 
# = overall mean 
a~ = effect of i-th genotype 
(c~z) o = interaction of i-th genotype with j - th  environment 
e o = error of mean of i-th genotype in j - th  environment 

It should be noted that if we employ a RCB design, the environ- 
mental effect zj may be written as z; = z'j + b j, where ~ is a "pure" 
environmental effect and bj is the mean of the effects of all blocks laid 
out in the j - th  environment. Throughout  this paper, we will assume 
that  bj = 0, whence zj = z'j, which implies that block effects in a given 
environment are fixed and sum up to zero. The assumption of fixed 
blocks is quite common in agricultural research (Kempthorne 1952, p 
152; Steel and Torrie 1980, p 218f). In order to make a decision as to 
whether blocks are fixed or random, it is helpful to answer the 
following question: may blocks be regarded as a random sample of a 
larger population of blocks, and if so, what are the geographical 
boundaries of this population of blocks? In most cases, if blocks are 
regarded as a sample from a larger population, it is seldom appropri- 
ate to assume that  the sample is a random one. We will therefore 
consider blocks as fixed, which means that  the population of blocks, 
and hence the environment under consideration, is confined to those 
blocks that  were actually included in the experiment. 

For the two procedures to be described, it is assumed that all 
effects (except error) are fixed. The mean Yu of genotype i in environ- 
ment j is the arithmetic mean of R replicates: 

Yij = Y ' . Y u J  R ,  (r = 1 . . . . .  R) (2) 

The simplest approach is to take the arithmetic mean Yu; i.e. the cell 
mean as an estimate of the yield of genotype i in environment j. The 
arithmetic mean is a Best Linear Unbiased Estimator (BLUE) of 
# + cq + zj + (c~z)q (Searle 1987, p 81). Gauch (1988) has produced 
evidence that  air improved estimate can be obtained by AMMI.  The 
principle of A M M I  is to first fit additive main effects for genotypes 
and environments by an ordinary ANOVA procedure and then to 
apply principle component analysis (PCA) to the matrix of residuals 
that  remain after the fitting of main effects (for details see Gauch 1992, 
p 85f.). The interaction plus mean error (c~z)~j + eij can be decomposed 
into S PCA axes: 

S 

Yij = # + cq + zj  + ~ l~aistjs + 0 u, (3) 
s = l  

where l s is the singular value for PCA axis s, a~s the genotype 
eigenvector for axis s and ~j~ is the environment eigenvector. Eigen- 
vectors are scaled as unit vectors. A residual 0~j remains if not all axes 
are used. There are at most min (K - 1, N - 1) axes. Depending on the 
number  of PCA axes retained, the models are denoted as AMMIO,  
AMMI1, . . . ,  AMMIF.  With AMMIO,  no PCA axis is fitted, while 
with A M M I F  the full model i.e. the cell means model is used. The 
latter is the same as the ordinary arithmetic mean in Eq. 2. 

AMMI  may be viewed as a procedure to separate pattern [i.e. the 
interaction effect (~z)o] from noise (i.e. the mean error eij). This is 
achieved by PCA, were the first axes (i.e. the axes with the largest 
eigenvalues), recover most of the pattern, while most of the noise ends 
up in later axes. In what follows we will present a different approach 
to achieve the same goal. The basic idea is to estimate the effects in the 
linear model and then to weight some or all of the effects by an 
estimate of the pattern-to-noise ratio associated with the respective 
effect. It must be emphasized that  this approach is limited to linear 
models, while AMMI  includes multiplicative terms. 

Up to now we have assumed that  all effects, including genotypes, 
are fixed. However, one may also take the view that  genotypes are 
random (Stroup and Mulitze, 1991). If genotypes are random # and ej 
are fixed, while % (c~z) u and e~j are randomly distributed with zero 

mean and with variances a~, (7~ and a 2, respectively. Clearly, we then 
have a mixed model. It should be emphasized that  by regarding 
genotypes as random rather than fixed, we do not necessarily elimi- 
nate our interest in the yields of specific genotypes. Rather, we now 
look for estimators of the realized value of random variables instead 
of estimating fixed effects. In the common statistical terminology (see, 
e.g. Searle et al. 1992, p 13), estimation of random effects is referred to 
as prediction; the corresponding procedure for mixed linear models is 
BLUP. 

Whether an effect is most appropriately deemed fixed or random 
does not so much depend on whether or not we are interested in a 
particular set of treatment effects, but rather on whether or not the 
levels of the effect being considered may reasonably be assumed to 
come from a probability distribution (Searle et al. 1992, p 18). More 
often than not, it is quite appropriate to assume that genotypes 
constitute a random sample from a certain population. Stroup and 
Multize (1991) have emphasized that in variety trials, where the 
number of treatments (varieties) may be between 20 and 100, BLUP is 
typically more efficient than BLUE, provided that  the distribution of 
treatment effects is reasonably symmetric. The same authors suggest 
that modelling an effect as random may be preferable even though it 
would be regarded as fixed using traditional definitions. Stroup and 
Mulitze (1991) hold the view that  the traditional distinction between 
fixed and random is not useful and that this distinction may in fact 
lead the data analyst to choose the less efficient alternative. 

We are interested in predicting the "true" yields wij = g + 
cq + zj + (c~z) u, given the observed yields y~j. To this end we will apply 
BLUP as suggested by Henderson (1975) and described in Searle et al. 
(1992, p 269f.). A derivation of BLUP is given in the Appendix, which 
shows that  the BLUP of w;j can be expressed as 

2 2 (7~ + N o ,  
BLUP(wo)=Y- . j+  2 2 2(35i.- 3 5..) 

% ~ + a  +N(7~ 

2 

+ ~-7,,,,,,,-~, _2 tY,j - Y~. -Y.j - 35 + 35.. ) 
( 7 a ~  - ~  O "  

(4) 

This expression demonstrates the shrinkage effect associated with 
BLUP. To see this, consider the following identity: 

Y,a = Y.J + (Y,. - Y . . )  + (Y,J - 35,- - 35-J + Y - . )  (5) 

= estimated mean of j - th  environment 
+ estimated effect of i-th genotype 
+ estimated interaction of i-th genotype with j - th  environment 

The effect of BLUP is to weight the estimated random effects 
(genotypic and interaction effects) in Eq. 5 by a factor that could be 
termed "repeatability". From Eq. 4 the BLUP of w u can be written as 

2 - - 2 - - - 
BLUP (wo) = 359 + hg (yi. - y . .  ) + hoe(yij - Yl. - Y.j + Y.. ) (6) 

with 

2 2 

ho - (Ta + a2 + N a ~  - "repeatability of estimated genetic effect" 

2 

h2 _ %, = "repeatability of estimated interaction" 
# e - -  2 2 

It is seen that  repeatabilities increase with decreasing error vari- 
ance (72. When a 2 equals zero the BLUP is identical to the cell mean. 
Since 1 >_ h 2 >__ h~e _> 0, the effect of BLUP is to shrink the estimated 
genotypic and interaction effects towards their zero mean whenever 
(72> 0, which will be the rule. The smaller the repeatabilities, the 
larger is the shrinkage effect. This shrinkage effect is considered a 
desirable property of BLUP. As Hill and Rosenberger (1985) pointed 
out, "intution tells most breeders to suspect a new entry with an 
exceptionally large or low mean, and the shrinkage property makes 
an adjustment consistent with the need for caution." 



BLUP assumes that  all variances (02, 2 ,  and 0 - 2 )  a r e  known. This 
requirement is rarely met in practice, so that  we will have to use 
variance component  estimates and accept a loss in efficiency. A recent 
account of variance component  estimation procedures is given in 
Searle et al. (1992). We will use the ANOVA method to estimate a~ 
and a~. 0-2 may be estimated as 

e ~ : Z ~ / R N ,  

where s~ is the error mean square in thej - th  environment. Computa- 
tion of s~ involves separate analyses of the statistical design in each 
environment. 

In this paper, focus will be on the case that the variance of a mean 
is the same in each environment. Often, however, the design and the 
number  of replicates are not the same in each environment, implying 
that  the variance of a mean (0-2) is not necessarily constant across 
environments (Cochran and Cox 1957, p 553). In this case the BLUP 
procedure is still applicable. With heterogeneous mean variances, the 
diagonal elements of V associated with the j - th  environment are 

2 2 2 2 �9 ' �9 % + G~ + ~ ,  where aj  denotes the variance of a mean an the j - th  
environment. For  BLUP, o 2 in Vmay be appropriately estimated by 
s2./R, where R. is the number  of replicates in thej - th  environment. If 

. J.' J 
t~as as done, one has to use the general formula an Eq. A.2 of the 
Appendix in place of Eq. 4, which is valid only for balanced data and 
homogeneous error variances. For  estimation of variance compo- 
nents from unbalanced data, see Searle et al. (1992). 

When some genotype-environment combinations are missing, 
BLUPs (using the general formula in Eq. A.2 of the Appendix) may 
still be obtained for those combinations that were observed. To 
compute BLUPs from Eq. A.2, we need to estimate the genotypic, 
interaction and error variances, and this is possible even if some 
genotype-environment combinations are missing, e.g. by Maximum 
Likelihood or REstricted Maximum Likelihood methods (see Searle 
et al. 1992, p 232f). 

In the discussion so far we have assumed that  genetic and 
interaction effects are random, while environments are fixed. Follow- 
ing Stroup and Mulitze (1991) we might as well regard all effects as 
random. It may be shown that  for the completely random model the 
BLUP (wifl  is given by 

2 -  BLUP (w~j) = f .. + h 2(fi , .  - ~ . .  ) + h e (y.j - f~.. ) 

2 
+ hoe(Yij - Yi .  - -  Y.j  + ~J.-) 

2 2 
where h0~ and h 0 are as defined above and 

2 2 

hZ e _ 0-~, + K a ~  2--- 2 ~ - -  2 - "repeatability of estimated environmental 
G~ + 0- + K0-~ effect" 

In a similar way we may obtain the BLUP for the modelwith fixed 
fixed genotypes and random environments. The following notation 
will be used for the different BLUPs: BLUPe = BLUP for genotypes 
fixed/environments random; BLUP 0 = BLUP for genotypes ran- 
dom/environments fixed; and BLUP0e = BLUP for all effects ran- 
dom. It is conjectured that BLUP for the different models do not 
differ appreciably. The difference between any of the above BLUPs 
and the cell mean will mainly accrue from the interaction effect. The 
important  feature common to all three BLUPs is that  interactions are 
random. Note that  in the cell mean each estimated effect receives a 
weight of 1, while with BLUP the estimates of random effects receive a 
weight between 0 and 1, the weights being equal to the repeatabilities 
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- - 2 2 . i ' as defined above. It as easily seen that h e and h 0 wall be close to un ty ff 
~r 2 and 0-2 are not much smaller than G2~ and 0-2. At the limit h~ 
appoaches a value of 1 as N tends to infinity. Similarly, he 2 tends to 
unity with increasing K. On the contrary, h~ is independent of K and 
N. Thus, it will generally not make a big difference whether genotypes 
or environments, or both are assumed random. What  is important  is 
that one of the two is considered random, such that  interactions are 
random. It should be pointed out that  ranking of genotypes within 
environments is always identical for BLUPg and BLUPoe. 

Example 

We will now compare the predictive accuracy of AMMI 
(AMMIO, AMMI1,..., AMMIF) to that of BLUP, em- 
ploying, five faba bean datasets from German registra- 
tion trials (1985-1989). Each of these data sets has four 
replicates. The number of genotypes and environments 
is displayed in Table 1. The trials in each environment 
were laid out as randomized complete block (RCB) 
design. 

Table 2 shows the ANOVA for the five faba bean 
datasets. In all of the datasets the genotype-environment 
interaction was significant at the 0.001 level, so the 
BLUP procedure proposed in this article and AMMI 
were deemed appropriate. Table 3 shows the estimated 
repeatabilities of different effects, h 2 and h~ are very close 
to 1 in all datasets, so in the examples considered here, 
BLUP~, BLUPg and BLUP~ yield very similar results. 

Predictive accuracy was assessed by randomly split- 
ting the original data into modelling data (three repli- 
cates = blocks of each environment) and validation data 
(the remaining replicate of each environment). The 
models AMMIO-AMMIF and BLUP were fitted to the 
modelling data. Then the residual mean square predic- 
tion difference (RMSPD) was calculated as the square 
root of the mean squared difference between model 
predictions and validation observations (Gauch and 
Zobel 1988). The procedure was repeated 1000 times 

Table 1 Number of genotypes in sugar faba beans data from German 
registration trials 

Number of 

Year Genotypes Environments 

1985 14 9 
1986 31 9 
1987 32 9 
1988 35 10 
1989 35 10 

Table 2 ANOVA mean squares, 
(MS) for five faba bean datasets 1985 1986 1987 1988 1989 

Genotype a 628.23 
a The environment MS and the Environment" 59 42.14 
genotype MS were tested against Block 55.33 
the interaction MS. In each data G x E 208.32 
set, all effects were significant at Error 15.19 
the 0.001 level 

678.82 771.64 631.75 522.21 
28437.23 9374.99 26 530.82 i2104.18 

341.06 127.80 141.16 198.74 
94.71 83.41 84.78 74.13 
29.61 19.56 15.63 13.38 
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Table 3 Repeatabilities of different effects in faba bean datasets 

2 2 2 
Year hg~ h o h e 

1985 0.972 0.976 0.998 
1986 0.687 0.956 0.999 
1987 0.766 0.975 0.998 
1988 0.816 0.975 0.999 
1989 0.819 0.974 0.999 

using different randomizations, and the result was aver- 
aged. Computations were done using the SAS matrix 
procedure IML (SAS Institute 1990). It is stressed that - 
for reasons to be discussed in the next section - the data 
splitting procedure used here is slightly different from 
that origninally proposed by Gauch and Zobel (1988). 
Moreover, as will also be discussed in the next section, in 
a strict sense the RMSPD of BLUPe and BLUP~e are 
not comparable to the RMSPD of BLUPo and AMMI. 
But, since h a is almost equal to unity, the comparison is 
approximately valid (see next section). 

Predictive accuracy as assessed by RMSPD is shown 
in Table 4. In four of the five datasets BLUP was more 
accurate than the best AMMI model, while in the 1985 
dataset, AMMI5 was identified as the best AMMI 
model. BLUP 0 and BLUPoe yielded the same RMSPD, 
while BLUP e had only very slightly larger RMSPD. 
Thus, the three BLUP methods were essentially equival- 
ent. For all datasets the best AMMI model had many 
axes. In the 1987 and 1988 datasets, the full model was 
the best of all AMMI models. This is in contrast to many 
other results, where AMMI0, AMMI1 or AMMI2 were 
identified as the most accurate models (see e.g. Gauch 
1988, 1992, p 139; Crossa et al. 1990). Obviously, the 
interaction pattern in the faba bean examples is too 
complex to be captured by only a few axes. This is also 
reflected by the sums of squares associated with the 
different PCA axes (see example of the 1986 faba bean 
dataset in Table 5). Another reason is the difference in 
the data splitting procedure compared to that suggested 
by Gauch and Zobel (1988). 

Table 5 Sums of squares, degrees of freedom and mean square for 
interaction, PCA axes and error of 1986 faba bean dataset 

Source SS d f  a MS 

Interaction 28411.51 240 94.71'** 
PCA1 7472.63 37 201.96*** 
PCA2 6634.81 35 189.57"** 
PCA3 4463.16 33 135.25"** 
PCA4 3364.96 31 108.55"** 
PCA5 2942.72 29 101.47"** 
PCA6 1756.24 27 65.05** 
PCA7 1369.64 25 54.79** 
PCA8 407.35 23 17.71 n~ 

Error 24783.57 837 29.61 

* Significant at P_< 0.5; ** significant at P_< 0.01; *** significant at 
P < 0.001; ns = non-significant 
aDegrees of freedom associated with a PCA are computed as 
d f  = K + N - 1 - 2s dffor PCA axis s (see Gollob 1968) Note that the 
Gollob-test is liberal for the first PCAs. For alternatives see Cornelius 
(1993) 

Cross validation for the RCB design 

The cross validation procedure by Gauch and Zobel 
(1988) has been applied to data from RCB designs by 
many authors (e.g. Crossa et al. 1990, 1991; Nachit et al. 
1992). Crossa et al. (1990) used data from trials that were 
laid out in a RCB design with four blocks ( = replicates) 
in each environment (this is the same design as in the 
faba bean example). For each treatment (i.e. genotype 
and environment combination) two replicates were se- 
lected at random to be modelled by AMMI, and the 
other two were reserved as validation observations. 
Thus, observations from a block were randomly split 
into modelling and validation data, thus destroying the 
original block structure. In contrast, the results in Table 
4 are based on randomly selecting (three) complete 
blocks of each environment. In other words, while by the 
method of Gauch and Zobel (1988) single observations 
are randomized within treatments, we randomized com- 
plete blocks within environments. The implications of 
this difference will be discussed later in this article. First 

Table 4 Predictive accuracy of 
AMMI and BLUP for five faba 
bean datasets (1985-1989) based 
on random splitting complete 
blocks in each environment 

"Most  accurate model 
u Most accurate AMMI model 

Model 1985 1986 1987 1988 1989 

RMSPD RMSPD RMSPD RMSPD RMSPD 

AMMI0 7.725 7.591 6.195 5.993 5.820 
AMMI1 6.469 7.548 6.043 5.628 5.411 
AMMI2 5.647 7.348 5.745 5.386 5.208 
AMMI3 5.182 7.306 5.659 5.189 5.087 
AMMI4 5.012 7.301 5.504 5.080 4.921 
AMMI5 4.874 a,b 7.224 5.554 5.100 4.897 
AMMI6 4.915 7.221 5.554 5.121 4.893 b 
AMMI7 4.895 7.194 b 5.516 5.107 4.893 b 
AMMI8 - 5.074 4.929 
AMMIF 4.915 7.220 5.492 b 5.041 b 4.947 
BLUPg 4.879 7.019 a 5.359 a 4.945" 4.864 ~ 
BLUPe 4.878 7.022 5.360 4.946 4.865 
BLUPg e 4.879 7.019" 5.359 a 4.945 a 4.864 a 
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consider the result of cross validation for the faba bean 
data based on randomizing single observations instead 
of complete blocks (see Table 6). The results indicate 
that a model selection based on randomizing single 
observations tends to favour simpler AMMI models 
than does a selection based on randomizing complete 
blocks. Only in 1985 was the same AMMI model se- 
lected with both randomization procedures. 

The tendency to select simpler models is a result of an 
inflated noise created by not keeping complete blocks 
together. The increased level of noise contributes to 
interaction and error in the modelling data. This is best 
seen by writing down the model for a single observation, 
which must include bj~ effect of the r-th block in thej-th 
environment: 

Yijr = # + ~i + ~ + bj~ + (c~z)i j + eij,. , (7) 

where e~j~ is the error associated with the r-th replicate of 
the i-th genotype in the j-th environment. Now assume 
that there are R blocks in each environment and that we 
randomly selected M blocks for modelling. The means 
that the model for the average across these M replicates 
can be writted as 

= g + ~ + zj + (ez)~j + e~j (8) 

with y~j = Z yij~/M, % = Z % r / M  , zj = z) + bj, and bj = 
Ebjr/M, where summation (Z) is across the M selected 
blocks. It is noted that the block mean effect bj can 
simply be added to the "pure" environmental effect z), 
yielding a modified environmental effect rj. Therefore, a 
randomization of blocks adds noise to an additive effect. 
On the contrary, a randomization of single observations 
adds noise to the nonadditive effects, i.e. the interaction 
plus error term. This is demonstrated by deriving the 
appropriate means from Eq. 7. To take account of the 
fact that for each genotype by environment combination 
the mean is not necessarily taken across the same repli- 
cates, we denote the block mean effect for the i-th 
genotype and thej-th environment as bj(i) and write the 
means model as 

y~j = # + ~ + z• + bj(i) + (c~z)~j + eij. (9) 

Now, the nonadditivity to be fitted by AMMI is given 
by the term bj(i)+ (c~r)i j + eij. The is not the same as 
when AMMI is fitted to the entire dataset, for which the 
nonadditity is (~v)~j + e~j. Thus, by randomizing individ- 
ual observations we have added noise to the nonadditi- 
vity. This is likely to have a bearing on the AMMI model 
selected by cross validation. It is to be expected that we 
select fewer axes than would be appropriate for the 
complete data. This is so because all axes will be con- 
taminated with additional noise from the data-splitting 
procedure and if, as a result of this contamination, an 
axis becomes mostly noise, it stands a high chance of 
being discarded in cross validation, even though it may 
capture a significant portion of the nonadditive pattern 
in the entire dataset. 

With an RCB design, randomization of complete 
blocks is more appropriate, for then the nonadditivity in 
the modelling data is not artificially inflated by an added 
bj(i). Splitting of single observations is perfectly ad- 
equate with a CR design, for which bj(i)= 0. But as 
Gauch (1992, p 21) points out, probably over 90% of 
yield trials employ the RCB design. 

Having selected the best model based on the 
RMSPD, one would like to know how much was gained 
by using AMMI or BLUP in place of the cell mean. The 
gain may be expressed in terms of the number of repli- 
cates needed for the different models in order to achieve 
the same accuracy. Gauch and Zobel (1988) suggested a 
gain factor (GF) to be computed from the RMSPD. We 
will mainly use the notation given by Crossa et al. (1990), 
where computation of GF  is discussed at some detail. 
They consider the square of RMSPD: 

(RMSPD) 2 = MSE(model - validation) 

= MSE(model) + Var(validation) (10) 

where MSE(model) = Var(model) + (Bias) 2. 
Let us, for the moment, assume a CR design. We are 

interested in a comparison of MSE(model) and the MSE 
of the cell means model [-MSE(cell means)]. Denote the 
residual error variance of a single replicate as a 2. If there 
are R replicates, the expected value of MSE(cell means) 
is a2/R. The approximate number of replicates needed 
for the cell means model to equal the performance of the 

Table 6 Predictive accuracy of 
AMMI for five faba bean 
datasets (1985-1989) based on 
randomly splitting single 
observations in each 
environment 

a Most accurate AMMI model 

1985 1986 1987 1988 1989 

Model RMSPD RMSPD RMSPD RMSPD RMSPD 

AMMI0 7.637 7.294 6.086 5.845 5.615 
AMMI1 6.377 7.318 6.047 5.486 5.202 
AMMI2 5.582 7.196 a 5.748 5.268 5.031 
AMMI3 5.089 7.244 5.664 5.087 4.955 
AMMI4 4.944 7.263 5.512 a 5.010 a 4.819 a 
AMMI5 4.814 a 7.220 5.567 5.038 4.867 
AMMI6 4.876 7.245 5.570 5.083 4.889 
AMMI7 4.867 7.236 5.539 5.091 4.903 
AMMI8 - 5.067 4.957 
AMMIF 4.894 7.277 5.514 5.045 4.988 
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best AMMI model is obtained by equation MSE(cell 
means) to MSE(model) and solving for R: 

R* = a2/MSE(model). (11) 

If, as in cross validation, the model is based on R - 1 
replicates, the gain factor is 

GF  = R*/(R - 1). (12) 

In order to estimate GF, an estimate of MSE(model) 
is needed. From Eq. 11, MSE(model)= (RMSPD) 2 -  
Var(validation) is the mean square error of a single 
observation, which equals 0 -g. It may be estimated by 
~;s2 /N .  Then, an estimate of MSE(model) is given by 

MSE(model) = (RMSPD) 2 - ~js~ /N .  (13) 

So far we have assumed a CR design with no block 
effects. If we have a RCB design, the block effects will 
inflate the RMSPD. Since in the complete data the mean 
of block effects in an environment equals zero, block 
effects are absent in the mean y~j. On the contrary, block 
effects are present in the means of the modelling data. 
Therefore, a correction for block effects is needed in 
Eq. 13. 

From Eq. 7 we know that in the modelling data the 
mean of block effects b2 is contained in a modified 
environmental effect z;. In the expression for BLUP (wij) 
in Eq. 4, only the environmental mean )7.2 is a function of 
b i. Clearly, 35.j is the sum of bi plus a linear combination 
of other model effects. Note that bj (as well as zj) cancels 
out in the estimated genotypic and interaction effects. 
The estimate for the additive part of AMMI may be 
written as 35.j + (35~. - 35.. ). Again, in this expression it is 
only y.j that is affected by bj. The multiplicative part of 
AMMI is not influenced by bj. The RMSPDs for AMMI 
and BLUP (w~2) are comparable because the added noise 
due to randomizing complete blocks is modelled in the 
same way by both procedures, namely by 35.j. On the 
contrary, BLUP with random environmental effects 
models the added noise by he 2 (y.j - 35.. ). Its R M S P D  is 
therefore not comparable to that of AMMI and BLUP 
(wi2), except when he 2 = 1. 

Since bj is not part of the model for the original data, 
a correction of MSE (model) is needed. If R - 1 blocks 
are selected for modelling, bj is given by 

bj= ~ b~j/(R-1) 
r~r" 

where the r'-th replicate is selected for validation. Con- 
sidering the restriction ~rbjr = 0, we find that this term 

is equal to - bj~,/(R - 1). In computing RMSPD, valida- 
tion data are subtracted from prediction from a model 
fitted to the modelling data. Thus, for each genotype and 
environment combination, the difference of " mode l -  
validation" contains the quantity - b~,/(R - 1) - bj~, = 
- Rbjr,/(R - 1). The expected mean square of this quan- 
tity is 

R; 2;~bj 2 _  R c~(b) ' 
( R - l )  2 R N  ( R - l )  

where @(b)= ~ j r b 2 j N ( R -  1). The expected value of 
crossproducts of bj~, with other effects (x, say) is zero, 
since r' may take on the value from 1 to R with equal 
probability, such that E(b j , , x )=  R - l ( b j l  + . . .  + bjR) 
x = 0. Therefore, R@(b)/(R - 1) is the desired correction 
factor, and we estimate MSE (model) by 

MSE(model) = (RMSPD): - ~ j s 2 / N  - R$(b) / (R  - 1), 

where (~(b) is an estimate of (I)(b). This may be obtained 
from the ANOVA mean square of blocks (MSmooks) in 
Table 2 as 

~(b) -- (MSmock s - -  ~ f i 2 / N ) / K .  

With the estimate of MSE (model), the gain factor can be 
estimated u.sing Eqs. 11 and 12. 

The gain factors for the best AMMI model and for 
BLUPo are displayed in Table 7 (within rounding errors, 
the gain factor of BLUP e and BLUP~e are the same as 
for BLUPo). The gain factor for BLUPo was higher than 
that for the best AMMI model in all cases except the 
1985 dataset. In 1986, BLUPg had a gain factor of 1.457 
(compared to only 1.043 for AMMI). Thus, for the 
arithmetic mean we would have needed almost six repli- 
cates in order to attain the same accuracy as with 
BLUP 0 based on only four replicates. The gain of 
BLUP 0 relative to that of the full model was small in 
1985, and BLUPg was less efficient than AMMI in that 
year. This may be explained by the comparatively small 
number of genotypes, which results in poor estimates of 
the variance components needed for BLUP. 

Concluding remarks 

This article has suggested an application of BLUP for 
the purpose of obtaining reliable yield estimates in 
genotype x environment datasets. From the faba bean 
example it is concluded that BLUP may be a worthwhile 
alternative to AMMI, particularly if the dataset is large 

Table 7 Gain factor of BLUP 
and the best AMMI model for 
five faba bean datasets (1985 
1989) 

1985 1986 1987 1988 1989 

Best AMMI 1.236 1.043 1 1 1.152 
BLUP ~ 1.074 1.457 1.310 1.237 1.253 
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enough so as to allow good estimates of variance com- 
ponents. It is stressed, however, that it should be decided 
on a case-by-case basis just which procedure is prefer- 
able. It is suggested that AMMI and BLUP be applied 
together routinely. An appropriate cross validation pro- 
cedure will then show which model is better in a given 
situation. If a data-splitting procedure as that suggested 
by Gauch and Zobel (1988) is applied to RCB designs, 
complete blocks rather than single observations should 
be randomized, and the gain factor should be computed 
accordingly. 

In this paper, focus has been on the RCB design 
because of its prevalence in many agricultural trials. 
When the number of genotypes is very large, however, 
complete blocks may become an inefficient means of 
error control due to systematic trends within the blocks. 
One approach to remedy this problem is a reduction in 
the block size by the formation of incomplete blocks (e.g. 
balanced incomplete block designs, lattice designs); an- 
other approach is to use nearest neighbour adjustment 
(NNA) methods. BLUP may be used in combination 
with both approaches. A description of NNA BLUP 
may be found in Stroup and Mulitze (1991). With in- 
complete blocks, the analysis must be based on adjusted 
genotypic means rather than on cell means in the re- 
spective environments. In yield trials, the most common 
design with incomplete blocks is the lattice design. If 
intra-block information is not recovered, the lattice 
design is appropriately analysed as an ordinary RCB 
design. If intra-block information is recovered, however, 
any combined analysis of lattice designs must be ap- 
proximative (Cochran and Cox 1957, p 560). As an 
approximate analysis it is suggested that effects and 
variance components be estimated in much the same 
way as for the RCB design, with the only difference being 
that adjusted cell means are used in place of raw cell 
means, s 2 may be equated to the effective error MS of the 
corresponding incomplete block design (Cochran and 
Cox 1957, p 560). 

An important advantage of AMMI is that it may be 
used for modelling and understanding interaction 
(Gauch 1992, chapter 6), a facility that is not offered by 
BLUP. AMMI has the further advantage that it allows 
the imputation of missing values (Gauch and Zobel 
1990), while BLUP yields predictors only for those 
genotype-environment combinations that were actually 
observed. One might consider imputing missing values 
by AMMI prior to applying BLUP to the data. 

AMMI and BLUP may be seen as two approaches to 
achieve the same goal, namely to separate pattern from 
noise. AMMI employs PCA, in which the first axes (i.e. 
those with the largest singular values) recover most of 
the pattern, while the bulk of noise concentrates in the 
later axes. On the contrary, BLUP first estimates effects 
of the ANOVA model and then weights them by an 
estimate of the corresponding pattern-to-noise ratios. In 
future work, it may be promising to combine the prin- 
ciples of AMMI and BLUP (H. G. Gauch, personal 
communication). Statistical theory for this type of ap- 

proach appears to be as yet lacking. One would have to 
estimate the pattern-to-noise ratio of "repeatability" of 
each PCA axis in the AMMI model. Gauch (1992, p 123) 
proposed a simulation-based procedure for estimating 
the pattern-to-noise ratio that may be used in such 
analyses. 

It would be interesting to compare BLUP to the 
Shifted Multiplicative Model (SHMM) recently sugges- 
ted by Seyedsadr and Cornelius (1992) and Cornelius 
et al. (1992). This was not done here since the cross 
validation procedure, with which we were mainly 
concerned, is felt to be inappropriate for SHMM if 
data are from an RCB design. In future work, we will 
compare the accuracy of AMMI, BLUP and SHMM 
using Monte Carlo simulation techniques. 

Appendix A 

If genotypes and  hence also the genotype-envi ronment  interact ions 
are deemed random,  B L U P  for our  par t icular  p rob lem may  be 
derived by rewrit ing the model  in Eq. 1 as 

Yij = fll + Uij +e i j ,  (A.1) 

where 

fij = # + zj is the fixed effects par t  of the model  and  u i. = ei + (~z).. is 
the r a n d o m  effects part .  It will be assumed that  all r a n s o m  effects are 
uncorrelated.  Equa t ion  A.1 is convenient ly  expressed in general  
mat r ix  nota t ion:  

y = X ~ + u + e ,  

where y, 11, u, e are vectors o fy i :  fij, ui :  and  ei: respectively, and  X is an  
appropr ia te  design matrix.  We wish to predict  the vector of " t rue"  
yields given by w = Xp + u. It  is seen that  E(w) = E(y) = X[~. We then 
have that  (w, y)' is dis t r ibuted with means  vector and  variance- 
covar iance mat r ix  as given by 

where V and  D are the  covar iance matr ices  of y and  w, respectively. 
Assume wi thout  loss of generality tha t  the first N values in y (and 
likewise in u and  e) cor respond to the first genotype,  the next N values 
to the second genotype and  so on i e ,  y ' =  (y , y ,y , 

' " " .  1 1 ' ' ' "  1 N  ~ '  " "  i l  " ' "  

Y"I . . . . .  YKn)" Then,  V and  D are block diagonal  with N x N submat-  
r~ces V* and  D* : 

[i0 01 0 
V* " �9 " 0 D* 0 

V =  , D =  

0 " " " V *  J 0 �9 " D *  

V* and  D* have diagonal  e l e m e n t s  Ujj=(72-}-(r2r+02 and  
d~j = 2 + a~,  respectively. All offdiagonal elements of V* and  D* are 
vjj, = djj, = a 2. We have (see Searle et aI. 1992, p 2709): 

B L U P  (w) = Xp ~ + D V  l(y _ XI~o) and  

BLUE(Xp)  = XII ~ = X ( X ' V - ' X ) - X ' V  ly, (A.2) 

where A -  is a generalized inverse of A. For  the p rob lem considered 
here, BLUE(XI~) amoun t s  to c o m p u t a t i o n o f  the e n v i r o n m e n t a l m e a n  
across K genotype and  R replicates (Compare  Searle 1987, p 490). Fo r  
calculat ing B L U P  (w) we need the inverse of V, which is ob ta ined  
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from the inverse of V* as: ,w0 0) 
O0 V*-I 

V_~= �9 0 

[_ 0 ~ V *-1 

from which 

"D*V *-1 0 

0 

D*V*-J 

0 D'V*  1 . 
DV -1 = 

0 0 �9 

It can be shown (see Appendix B) that 

0.2 0-20-2 
D*V*-~  ~ I 0-2c~z ~- 0-2 N -]- (0-2~ .~ 0.2)(0-2 ~_ 0-2 .A~ NO- 2) JN, (A.3) 

where I N is the N x N identity matrix and JN is an N x N matrix with 
all elements equal to unity. With this result, the BLUP of w.. can be 
expressed as 'J 

0-2 + N0-2 
~tv cL - 

BLUP%j) = ~.: + 0-~ + 0-2 + N0-~(Y~ - Y )  

0-2 + ~ , - - + -  
0-2 +a2tY/~ Y~ y~ y .), (A.4) 

which is the formula given in Eq. 4. 

Appendix B 

In what follows it will be shown that D*V *-~ can be written as in 
Eq. A.3. We will use the following two results for matrices of the form 
(aI. + bJ.), where I. is an n x n identity matrix and J. is an n x n 
matrix with all elements equal to unity (Searle et al. 1992, p 443): 

1 b 
(1) (aI. + bJo)- 1 = a(I~ - a~-~nb J.) 

(2) (aI. + bJn)(cI . + dJ~) = acI. + (ad + bc + bdn)J. 

Upon noting that 

v* = (o2~ + ~2)~N + ~2JN and 

D* = 0-2IN -4- 6 2 JN' 

we find 

1 ~ -J  , 
V*- 1 a2 ~ + 0-2 I, 0-2~, + 0-2 + N~r~ " 

and with (2) we obtain the formula for D*V *-1 given in Eq. A.3. 
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